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1. It is known that a heated fluid can be in equilibrium in a gravi- 

tational field only if the temperature distribution T(x) in it has the 

form 

T = To (5) = cx, +- co (1.1) 

where C and Co denote constants, the axis x3 being directed vertically 

downwards. However, the preceding solution can turn out to be unstable: 

for example, a stable steady flow of the fluid can come into being. ‘lhis 

is the case which we shall examine in the present paper. The flows of 

the type just mentioned, called steady-state natural convection, are de- 

scribed by the system of equations [l] 

VAV’ = (v’ *V) v’ + Op ’ -+- &T’, xAT’ = vlvTf, div v’ = 0 (1.2) 

where the following notation is used: v’(x) is the velocity of the fluid; 

n= (+ x2, x,) is a point in the three-dimensional space; T’(x) is the 

temperature; p’(x) the pressure; v, x, p, respectively, are the visco- 

sity, thermal conductivity and thermal expansion; g(0, 0, g) is the 
acceleration due to gravity; the density of the fluid has been set equal 

to unity. 

We shall seek a solution (v’, p’, 7”) of the system (1.2) in a 

bounded domain Q which satisfies at its boundary S the set of conditions 

V’IS = 0, T’ Is =cx, + co (1.3) 

Tt is evident that 

v o = 0, T,, = Cs, + Co, p. = - pg ($ Cz,g + Co& + corn% (1.4) 
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solves the problem (1.2), (1.3):Performing the change of variables 

v’ = VJ $- v, PI = po -I- pg T’ = T,, f T (4.5) 

in (1.2) and (1.3), we have 

~Av = (v .V) v + VP + NT, xAT = vVT + Cvl, div v = 0 (1.6) 

?J 1s = 0, TIs=O (1.7) 

Together with the preceding problail, we shall consider the linearized 

problem 
(1.8) 

vAv = Vp + fIgT, xAT = CvI, div v = 0; v Is =O, T 1s = 0 

We shall ask for those values of the parameter C which lead to non- 

trivial solutions of the problem (1.6) and (1.7). In order to do this 

we shall reduce the problem (1.6) and (1.7) to the operator equation 

v = K (v C) (1.9) 

in some Hilbert space H,c The operator I( is continuous, and this gives 

us the opportunity to apply the general theory of the bifurcation of 

solutions [21 to the study of equation (1.9). The system (1.8) reduces 

to the operator equation 

v = CBv (1.10) 
where B, a linear operator, is the Frechet differential of operator K. 

Furthermore, the following acts can be established. 

Theorem 1.1. The operator R is selfadjoint, positive and completely 

continuous. It follows that there exists a denumerable set of dharacter- 
istic values of equation (1.10) (problem (1.8)) 

and a corresponding complete system of eigenvectors vl, vpr . . . 

Theorem 1.2. (1) Equation (1.6) (problem (1.9), (1.7)) with C < C, 

possesses only a trivial solution. (2) ‘lhe points of bifurcation can 
only be C,, C,, . . . . (3) Every number C,(k = 1, 2, . ..) to which there 

corresponds a non-denumerable set of characteristic vectors of equation 

(1.10) constitutes a genuine point of bifurcation of equation (1.10). 

Section 4 of this paper contains an example of the application of 

‘Theorems 1.1 and 1.2. 

Sorokin [3,4] devotes to the study of convection in a viscous fluid. 

Reference [31 establishes a variational principle which is satisfied by 

the eigenvectors and eigannumbers of problem (1.18,. and a Ritz method 

for their approximate calculation is proposed. However, no proof of the 
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existence of the eigenvalues has been given. In the process of proving 
Theorem 1.1 we derive an alternative variational principle (and an 
entirely different variant of Ritz’s method). The justification of the 
variational principle and of the Ritz method given in [31 can be carried 
out by a method which is closely related to that given here. A proof 
(1) of Theorem 1.2 is given in 141. In addition, it is proved that 
uniqueness occurs also for C = Cl, but the proof contains an error*. In 
spite of this, [41 establishes formal expansions of the solutions to 
the problem of convection into series of a special kind. 

2. In order to derive the operator equations, we shall adopt a method 
similar to that developed in [51. We define a Hilbert space H, as a 
closure of a set of smooth solenoidal vectors in space Q which vanish 
near the boundary S of a norm given by the scalar 

(ii, +I, = s rot usrot v dx 
n 

(2.1) 

Let H, be the closure of a set of functions smooth in the domain Q 
which are equal to zero on the boundary, of a norm given by the scalar 
product 

(f, gh = 1 of. VJg dx 
cl 

(2.2) 

We shall call the pair (v, T), v EH~, T E H,, which satisfies the 
integral identities 

Y (v, cD)s, = - s (v. V) vQ, dx - Pi Tg@dx 
n n 

x (T,cp)a,= - 1 e7Wx--Cl v,qdx 
n 0 

(2.3) 

(2.4) 

a generalized solution of problem (J.6), (1.7). Here OEH,, q EH2, 

and are arbitrary. 

From the results in [61 it is easy to prove that the above general- 
ized solution is infinitely differentiable everywhere inside Q and 

satisfies equations (1.6) to (1.7); if the boundary of S is sufficiently 

l In (2.10) and (1.5) (see [4, p. 1991) the symbol P refers to differ- 
ent quantities. For this reason on the right-hand side of (2.11) it 
is necessary to put aq and the subsequent statements lose their 
validity. The result itself is, evidently, correct. 
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smooth, then derivatives of an arbitrary, prescribed order 

tinuous* in the closed domain Q. 

Lenuna 2.1. It follows from (2.4) that 

T = CAv 
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will be con- 

(2.5) 

where A denotes an operator operating from H, into Hz which is uniformly 
continuous and independent of C. For an arbitrary function f EL,,,(Q) 
we define an operator Lf by the integral identity 

(2.6) 

for all 9 EH2. Ap 1 p ying Sobolev’ s canposition theorem [81, we find that 
the right-hand side of (2.6) represents a linear functional with regard 
to 9 in H,. It follows from Riesz’ theorem on the general form of a 
linear functional in a Hilbert space that the operator L is determined; 
L denotes a linear operator fran Lp(Q) (p >6/5) in Hz which is mm- 

pletely continuous for p > 6/S. It follows from (2.4) that 

T = LIT = L,T - CLv8, &T = - L (vVT) (2.7) 

For a fixed v EH1 the operator Lv is completely continuous in H2. 

We shall prove that for C = 0 (2.7) implies T = 0. Indeed, multi 
(2.7) scalarly by T and applying (2.6) we find at once that 11 T i 

lying 
H, =O. 

According to Fredholm’s theorem it follows further that the inverse of 
the operator E - Lv exists, and (2.5) is satisfied for 

Av = - (E - L,)-1Lv3 

Let now vn - v in H, for n - 0~. We assume T, = CAV, and prove that 
T, 3 T=CAv in H,. We write (2.4) for T,,,, vm and T,, vn. Evaluating 
these relations one from the other and substituting cp = T, - T, we 
obtain 

xllTm--T,II& =\ (vn--Y,)VT,n(Gv-T&ix - 
n 

- C 
s 

(v- - v,J (T, - Z’,,) dz 
n 

(2.8) 

l Applying the methods of E5.61, it is possible to prove that a more 
general problem involving two nonhomogeneous equations (1.6) can be 
solved “in the whole” (see also [T]). 
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Estimating the +&t-hand side of (2.8) with the aid of ft3der in- 
equality and the composition theorem, we obtain 

x II Tm - T, 11~~ < M (11 vm - vfi IIL, 1 II Avm I/IS, + C II vm - vn It,) (2.9) 

where jw is a constant” which depends only on domain 8. Now, front (2.4) 
with g, = T, we can easily find that 

IIAv1l.S G CM1 IIV llr, (2.10) 

Making use of the property of complete continuity of the composition 
of ii, into 4 (p < 61, we find that 

it TN- T7&3*-““+~ 

It follows that the continuity of 
lemma is thereby proved. 

We now define an operator KF for 
(p > 6/S) through the identity 

for m,n.+ co (2.11) 

the operator A is uniform. Ihe 

an arbitrary vector F(x) ELp(ftf 

v (X, F U+I, = 
s 

FEZ, dx (0 E HS (2.12) 
n 

In the same way as was done earlier in relation to operator L it is 
possible to establish that K, is a linear and completely continuous 
operator. 

Lemma 2.2. Every generalized solutian (v, T) of problem (1,6), (1.7) 

in the sense of (2.3), (2.4) satisfies the operator equations 

v = K (v, C), K (v* C) = KaY _t C&v (2.13) 

Kav = - x1 (v, v) v, Kav = - XI, (BgAv) (2.14) 

where I$ and K, are completely continuous in II,. Conversely, every solu- 
tion (v, 7’) of the system (2.f:~) to (2.14) constitutes a generalized 
sofution. 

llna justification for Lemma 2,2 follows iaxnediately from Lenma 2.1 

and the property of complete continuity of operator I(,. 

1 In what follows. 1, hli denote consecutive constants whose values de- 
pend exclusively on tbe domain R. 
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Let us first determine the generalized solution of the linearized 

problem (1.8) in a form of the pair (v, 77, v EH1, T E H, which satis- 

fies the integral identities 

v(vA%f,=-8\TB@dr, X(T,cp)a,=-C\v,cpd~ (2.15) 

PEHl) ” 
Lemma 2.3. ‘Ihe quest for the generalized 

in the sense of (2.15) is equivalent to the 

equation 

n 
(cp E Ha) 

solutions of problem (1.8) 

solution of the operator 

(2.16) 

where the operator on the right-hand side is completely continuous and 

constitutes a Fr6chet differential of operator K(v, Cl at the point 

v = 0. ‘Ihe proof of this lenma follows from the determination of opera- 

tors K,, L and some simple estimates in an obvious way which we shall 

omit for the sake of brevity. 

3. In order to prove ‘lheorem 1.1, we observe that in view of Lemmas 

2.2 and 2.3, it is sufficient to prove that operator hr = Kl@&v,) is 

self-adjoint and positive in HI. 

‘Ihe fact that R is selfadjoint is a consequence of (2.6) and (2.12) 

and of the following chain of equations which are satisfied for arbitrary 
v, w E H, 

= 5 \ Lv,w, dx = ‘9 (L us), Lw~)H, = (v, Bw)~, 
a 

(34 

It follows from (3.1) with the substitution w = v that 

(Bv, V)H, = !+I[&//&>0 (3.2) 

‘Ihis means that the operator is positive. Theorem 1.1 has been proved. 

Let C, denote the smallest eigenvalue of the linear problem (1.8), 

and let (vr, T,, p,) be its corresponding characteristic solution. h%lti- 

plying the first equation (1.8) by vl, and the second equation (1.8) by 
T, and integrating, we obtain 

(3.3) 
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On the other hand, as shown in [41, equations (1.8) will constitute 

the Kuler equations of the variational problem 

- 6 v,T dx = 1, divv = 0 

(3.4) 

(3.5) 

This means that if there exist values v = v+, T = T+ which render 
the functional (3.4) a minimum subject to the conditions (3.51, then in 
conjunction with some P = I’+ they will constitute the solution of prob- 
lem (1.8) for some C = C+. It is clear that 

” + ‘+ = 
vIlv+II~*+XII~+li~,~~in vllvll&+wu& 

- f v*+T+dx 
-% 

(3.6) 

0 
u~T dz! 

Taking into account (3.3) and the fact that C, is a minis, equation 

(3.6) leads to 

(3.7) 

Let first (v, p, 7’) be an arbitrary, non-trivial solution of the non- 

linear problem (1.6) which corresponds to sane C. Proceeding exactly in 
the same way as in connection with the derivation of (3.31, we obtain 

c = vU4&+xlI~ II& 
v8T dx 

Finally, frcm (3.7) and (3,8), we obtain 

The validity of Sections 2 and 3 follows 

by Krasnoselskii [21 on the basis of Lemmas 
has been proved completely. 

- I% 

that C, \< C. 

(3.8) 

from the results obtained 

2.2 and 2.3. The theorem 

4. In general it is impossible to establish the multiplicity of the 

eigenvalues of problem (1.81, i.e. in view of the self-adjointness of 

operator B, the number of characteristic functions which corresponds to 

a given eigenvalue cannot be determined. 

We now adduce an example for which this can be done, and for which 

the preceding considerations lead to the demonstration of the existence 

of bifurcation points. 

We shall seek solutions v, I’, p of system (1.6) which are periodic 
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in x1, x2 and .x3 with periods 2a, 26 and By which render UJ denumerable 
with respect to x2, x3 and non-denumerable with respect to nJ; v2 is de- 
numerable with respect to x2, x3 and non-denumerable with respect to x3; 

U3’ T are denumerable with respect to x1, n2 and non-denumerable with 
respect to x3, F is denumerable with respect to xJ, x2, n3. It is not 
difficult to show that ‘lheorans 1.1 and 1.2 are satisfied also in this 
case because the requirement of periodicity completely replaces the 
preceding boundary conditions. 

We shall now remark further that the corresponding linearized prob- 

lem reduces itself to the determination of 7’ from the equation 

AsT = ‘g (T,, + T-) (4.1) 

if v and ]? are excluded, subject to the preceding conditions of period- 

icity and denumerability. ‘lhe eigenvalues of this problem are 

5 
vXn4 k$ 

kmn = ps -(~+~+~,‘(~+~)-1 

(k*+m*#O; k,m=O,l, 2,. ..; n=l, 2, . ..) 

(4.2) 

to which there correspond the characteristic functions 

T k,,,,, k cos (4.3) 

We remark that A,_,, >/v *x4&g = A,, and this means that for C < A,, 
the preceding solution of problem (1.6) does not exist for any values 
of a, 6 and y. 

If to the eigenvalue hknn there were to correspond more than one 
characteristic function, then AA,,,,, = Ak R n for some other choice of 

k 18 ml, nl. Let us fix a and 6. 7hen y Aa: &e uniquely expressed in 

terms of k, m, R, k,, ml, ral, a and 6. It is clear that the multicipli- 
city of such gammas as correspond to all possible choices of k, m, n, 

kl, ml and nJ cannot be higher than denumerable. llence, for arbitrary 
values y, except perhaps for some denumerable set, all eigenvalues will 
be simple and each of them will constitute a point of bifurcation, 
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